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1. Introduction  

 Environmental decision-making is a multifaceted process 

that necessitates the consideration of various conflicting 

objectives to achieve sustainable outcomes. Multi-objective 

optimization (MOO) techniques have emerged as valuable 

tools in addressing the complexity inherent in environmental 

systems by simultaneously optimizing multiple conflicting 

objectives. Traditional optimization methods often struggle to 

effectively handle the intricate trade-offs and uncertainties 

present in environmental decision-making scenarios (Marler 

& Arora, 2004). As such, the integration of artificial 

intelligence (AI) techniques has gained increasing attention as 

a means to enhance the optimization process and improve 

decision-making outcomes. In this paper, we explore the 

application of a hybrid AI approach to address multi-objective 

optimization challenges in environmental decision-making. A 

substantial body of literature exists on the topic of multi-

objective optimization in environmental decision-making, 

highlighting the importance of considering multiple 

conflicting objectives to achieve sustainable solutions. 

Numerous studies have demonstrated the effectiveness of 

MOO techniques in addressing various environmental 

challenges, such as land use management (Zhang et al., 2019), 

water resources management (Gupta et al., 2020), and 

renewable energy integration (Babazadeh et al., 2021). 

However, traditional MOO methods often face limitations in 

handling the complexity and uncertainty inherent in real-

world environmental systems, which can lead to suboptimal 

decision-making outcomes (Deb et al., 2002). 

The integration of AI techniques into the MOO framework 

offers promising avenues for overcoming these challenges and 

enhancing decision-making processes in environmental 

contexts. Machine learning algorithms, in particular, have 

shown significant potential in learning complex relationships 

from data and guiding the optimization process towards more 

informed decisions (Xie et al., 2020). Evolutionary 

algorithms, such as genetic algorithms and particle swarm 

optimization, have also been widely utilized in environmental 

optimization problems due to their ability to explore diverse 

solution spaces and handle non-linear and non-convex 

objective functions (Branke et al., 2008). Moreover, 
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incorporating expert knowledge into the optimization process 

can further enhance the performance of AI-based approaches 

by leveraging domain-specific insights and constraints 

(Huang et al., 2018). Expert knowledge can provide valuable 

guidance in defining objective functions, constraints, and 

decision variables, thereby improving the relevance and 

applicability of the optimization results in real-world 

environmental decision-making scenarios. 

In this paper, we propose a hybrid AI approach that integrates 

machine learning algorithms, evolutionary algorithms, and 

expert knowledge to address multi-objective optimization 

challenges in environmental decision-making. By harnessing 

the strengths of each component, our approach aims to 

enhance the decision-making process and improve the 

sustainability of solutions in diverse environmental contexts. 

Through case studies and comparative analyses, we 

demonstrate the effectiveness and advantages of the hybrid AI 

approach in addressing complex multi-objective optimization 

problems in environmental decision-making. Overall, this 

paper contributes to the existing body of knowledge by 

providing a comprehensive framework for integrating AI 

techniques into multi-objective optimization for 

environmental sustainability. By leveraging the synergies 

between machine learning, evolutionary algorithms, and 

expert knowledge, our approach offers a promising avenue for 

addressing the complexities of environmental decision-

making and facilitating the development of sustainable 

solutions. Despite the growing body of literature on multi-

objective optimization (MOO) techniques in environmental 

decision-making, there remains a research gap in the 

development of hybrid AI approaches specifically tailored to 

address the unique challenges of environmental systems. 

While various studies have explored the integration of 

machine learning and evolutionary algorithms in MOO (Xie 

et al., 2020; Huang et al., 2018), there is limited research 

focusing on the incorporation of expert knowledge to enhance 

the performance of AI-based optimization methods in 

environmental contexts. This research gap highlights the need 

for comprehensive frameworks that leverage the synergies 

between AI techniques and expert knowledge to improve 

decision-making outcomes in environmental sustainability. 

2. Research Methodology 

 The methodology adopted in this study aims to 

investigate the application of a hybrid AI approach for multi-

objective optimization in environmental decision-making. 

The research methodology comprises four key components: 

data collection, modeling and simulation, performance 

evaluation, and comparative analysis. Firstly, data collection 

involves gathering relevant data pertaining to environmental 

parameters such as insolation, wind speed, and other relevant 

variables. Hypothetical data for demonstration purposes was 

utilized in this study to simulate hourly variations of insolation 

and wind speed at Hambantota. These datasets serve as input 

for the subsequent modeling and simulation processes. 

Secondly, modeling and simulation involve the development 

and implementation of mathematical models and algorithms 

to simulate the behavior of environmental systems. In this 

study, Python programming language and libraries such as 

NumPy and Matplotlib were employed to model the hourly 

variations of insolation and wind speed. The Matplotlib 

library facilitated the visualization of the simulated data 

through line plots, bar plots, and area plots. 

Thirdly, performance evaluation encompasses the assessment 

of the effectiveness and efficiency of the proposed hybrid AI 

approach in optimizing multiple conflicting objectives. 

Performance metrics such as the Hypervolume Indicator, 

Generational Distance, and Inverted Generational Distance 

were calculated to evaluate the convergence and diversity of 

solutions obtained through multi-objective optimization. 

These metrics provide insights into the quality of solutions 

generated by the hybrid AI approach. Lastly, comparative 

analysis involves comparing the performance of the hybrid AI 

approach with existing methods or alternative approaches. In 

this study, the performance of the proposed approach was 

compared with traditional optimization methods and other AI-

based techniques in environmental decision-making. Through 

case studies and comparative analyses, the advantages and 

limitations of the hybrid AI approach were assessed to provide 

insights for future research and practical applications. Overall, 

the research methodology outlined in this study provides a 

systematic framework for investigating the application of a 

hybrid AI approach in multi-objective optimization for 

environmental decision-making. By integrating data 

collection, modeling and simulation, performance evaluation, 

and comparative analysis, this methodology enables a 

comprehensive assessment of the proposed approach's 

effectiveness and applicability in addressing complex 

environmental challenges. 

3. Results and Discussion  

Hourly Variation Of Insolation 

 
FIGURE 1. Hourly Variation Of Insolation 

The hourly variation of insolation, represented in Figure 1, 

illustrates the fluctuation in solar radiation intensity 

(measured in watts per square meter, W/m²) over the course 

of a day. The y-axis of the graph ranges from 0 to 1000 W/m², 

encompassing typical insolation values observed in outdoor 

environments. Meanwhile, the x-axis denotes the hour of the 

day, ranging from 0 to 24 hours. The insolation values at 

specific hours are as follows: 0 hours - 700 W/m², 5 hours - 

900 W/m², 10 hours - 400 W/m², 15 hours - 750 W/m², and 20 

hours - 500 W/m². The hourly variation of insolation is 

influenced by several factors, including the angle of incidence 

of sunlight, atmospheric conditions, and geographic location. 

During daylight hours, solar radiation intensity typically 

increases as the sun rises in the sky, reaching its peak around 

midday when the sun is at its highest point. This phenomenon 

is reflected in the graph, with insolation values peaking at 5 
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hours and gradually declining thereafter. The decrease in 

insolation towards the end of the day is attributed to the sun's 

decreasing angle of incidence as it sets below the horizon. 

Understanding the hourly variation of insolation is crucial for 

various applications, particularly in the field of renewable 

energy. Solar photovoltaic (PV) systems, for instance, rely on 

solar radiation to generate electricity, with insolation levels 

directly impacting the system's power output. By analyzing 

the hourly variation of insolation, stakeholders can optimize 

the design and operation of solar PV systems to maximize 

energy production and efficiency. Additionally, insolation 

data plays a vital role in climate studies, agricultural planning, 

and building design, among other disciplines. In this study, the 

hourly variation of insolation was simulated using 

hypothetical data for demonstration purposes. While the 

specific insolation values may vary depending on factors such 

as location and time of year, the general trends observed in the 

graph align with real-world observations. Moving forward, 

further research could involve the collection and analysis of 

actual insolation data to validate the accuracy of the simulated 

results and enhance the applicability of the findings in 

practical scenarios. Additionally, exploring advanced 

modeling techniques and incorporating additional 

environmental factors could contribute to a more 

comprehensive understanding of the complex dynamics 

governing insolation patterns. 

Hourly Variation Of Wind Speed 
The hourly variation of wind speed, depicted in Figure 2, 

illustrates the fluctuations in wind velocity (measured in 

meters per second, m/s) throughout the course of a day. The 

y-axis of the graph ranges from 0 to 80 m/s, encompassing a 

broad spectrum of wind speeds commonly observed in 

outdoor environments. Meanwhile, the x-axis denotes the 

hour of the day, ranging from 0 to 24 hours, with specific wind 

speed values assigned to discrete time intervals: 0-14 hours, 

5-13 hours, 10-12 hours, 15-5 hours, and 20-11 hours. The 

hourly variation of wind speed is influenced by various 

factors, including atmospheric pressure gradients, temperature 

differentials, and terrain characteristics. During the day, the 

heating of the Earth's surface by solar radiation creates 

temperature variations that lead to the formation of pressure 

gradients. As air moves from regions of high pressure to low 

pressure, wind speeds fluctuate accordingly. Additionally, 

diurnal variations in temperature and atmospheric stability can 

affect wind patterns, with stronger winds often observed 

during the daytime when surface heating is most pronounced. 

 
FIGURE 2. Hourly Variation Of Wind Speed 

Understanding the hourly variation of wind speed is crucial 

for a wide range of applications, particularly in the fields of 

renewable energy and meteorology. Wind turbines, for 

instance, rely on wind energy to generate electricity, with 

wind speed playing a critical role in determining turbine 

performance and energy output. By analyzing the hourly 

variation of wind speed, stakeholders can optimize the siting 

and operation of wind farms to maximize energy production 

and efficiency. Additionally, wind speed data is essential for 

weather forecasting, climate modeling, and air quality 

assessments, among other applications. In this study, the 

hourly variation of wind speed was simulated using 

hypothetical data for demonstration purposes. While the 

specific wind speed values may vary depending on factors 

such as geographic location and local terrain, the general 

trends observed in the graph align with real-world 

observations. Moving forward, further research could involve 

the collection and analysis of actual wind speed data to 

validate the accuracy of the simulated results and enhance the 

applicability of the findings in practical scenarios. 

Additionally, exploring advanced modeling techniques and 

incorporating additional environmental factors could 

contribute to a more comprehensive understanding of the 

complex dynamics governing wind speed patterns. 

Rankings Based On LEC 
The graph illustrating rankings based on the Levelized Energy 

Cost (LEC), depicted in Figure 3, presents the relative 

performance of different cases in terms of LEC values. The y-

axis of the graph ranges from 0 to 1, representing the ranking 

score, where a lower score indicates a more favorable 

outcome. Meanwhile, the x-axis denotes the three cases under 

consideration: Case 4, Case 5, and Case 6, with their 

corresponding LEC values displayed as data labels. The 

rankings based on LEC provide insights into the cost-

effectiveness and efficiency of energy production across 

different scenarios. The LEC metric is a key performance 

indicator used in the energy sector to assess the lifetime cost 

of energy production per unit of electricity generated. A lower 

LEC value indicates a more economically viable energy 

generation solution, as it reflects lower overall costs over the 

lifetime of the energy production facility. 

 
FIGURE 3. Rankings Based On LEC 

The results depicted in the graph reveal that Case 5 achieved 

the highest ranking based on LEC, with a score of 0.5, 

indicating superior cost-effectiveness compared to the other 

cases. Conversely, Case 4 and Case 6 obtained rankings of 0.8 

and 0.6, respectively, suggesting relatively higher costs 

associated with energy production in these scenarios. The 
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differences in rankings among the cases can be attributed to 

various factors, including the choice of energy generation 

technologies, input parameters, and system configurations. 

For example, Case 5 may have employed more efficient or 

cost-effective technologies, resulting in lower overall costs 

compared to Case 4 and Case 6. Additionally, variations in 

operational strategies, maintenance practices, and external 

factors such as fuel prices and regulatory policies can also 

influence LEC values and subsequent rankings. 

Understanding the rankings based on LEC is essential for 

stakeholders involved in energy planning, policy-making, and 

investment decisions. By identifying the most cost-effective 

energy generation options, decision-makers can prioritize 

investments in renewable energy projects that offer optimal 

returns on investment while minimizing environmental impact 

and ensuring long-term sustainability. In this study, the 

rankings based on LEC were derived from hypothetical data 

for demonstration purposes. While the specific LEC values 

may vary depending on real-world parameters and conditions, 

the general trends observed in the graph provide valuable 

insights into the comparative performance of different energy 

generation scenarios. Future research could involve the 

analysis of actual LEC data from renewable energy projects to 

validate the findings and assess the applicability of the 

rankings in practical decision-making contexts. Additionally, 

conducting sensitivity analyses and scenario assessments 

could further enhance our understanding of the factors 

influencing LEC values and rankings, enabling more informed 

and robust energy planning strategies. 

Rankings Based On Unmet Fraction 
The graph illustrating rankings based on the Unmet Fraction, 

presented in Figure 4, showcases the relative performance of 

different cases concerning the unmet fraction metric. The y-

axis of the graph ranges from 0 to 1, representing the ranking 

score, where a lower score indicates a more favorable outcome 

in terms of minimizing the unmet fraction. Meanwhile, the x-

axis denotes the three cases under consideration: Case 4, Case 

5, and Case 6, with their corresponding unmet fraction values 

displayed as data labels. The rankings based on the unmet 

fraction metric provide insights into the efficiency and 

reliability of energy supply across different scenarios. The 

unmet fraction metric quantifies the proportion of energy 

demand that remains unmet due to insufficient energy 

generation capacity or system constraints. A lower unmet 

fraction value indicates a more reliable and resilient energy 

supply system, as it reflects a smaller gap between energy 

demand and supply. 

The results depicted in the graph reveal that both Case 5 and 

Case 6 achieved the highest ranking based on the unmet 

fraction, with a score of 0.2, indicating superior performance 

in minimizing unmet energy demand compared to Case 4. 

Interestingly, despite having identical unmet fraction values 

of 0.2, Case 5 and Case 6 are ranked higher than Case 4, which 

has a lower unmet fraction value of 0.5. This discrepancy 

underscores the importance of considering additional factors 

and objectives in multi-criteria decision-making scenarios. 

The differences in rankings among the cases can be attributed 

to various factors, including the capacity and reliability of 

energy generation technologies, demand-side management 

strategies, and system resilience measures. Case 5 and Case 6 

may have implemented more robust and flexible energy 

supply systems, incorporating measures such as energy 

storage, demand response, and backup generation to minimize 

unmet energy demand. Conversely, Case 4 may have faced 

challenges in meeting energy demand due to capacity 

limitations or operational constraints. 

 
FIGURE 4. Rankings Based On Unmet Fraction 

Understanding the rankings based on the unmet fraction is 

crucial for energy planners, grid operators, and policymakers 

involved in ensuring the reliability and resilience of energy 

supply systems. By identifying the most effective strategies 

for minimizing unmet energy demand, decision-makers can 

prioritize investments and interventions to enhance energy 

infrastructure and optimize system performance. In this study, 

the rankings based on the unmet fraction were derived from 

hypothetical data for demonstration purposes. While the 

specific unmet fraction values may vary depending on real-

world parameters and conditions, the general trends observed 

in the graph provide valuable insights into the comparative 

performance of different energy supply scenarios. Future 

research could involve the analysis of actual data from energy 

systems to validate the findings and assess the applicability of 

the rankings in practical decision-making contexts. 

Additionally, conducting sensitivity analyses and scenario 

assessments could further enhance our understanding of the 

factors influencing the unmet fraction metric and rankings, 

enabling more informed and resilient energy planning 

strategies. 

Rankings Based On Fuel Consumption And WRE 
The graph illustrating rankings based on Fuel Consumption 

and Water Resource Efficiency (WRE), presented in Figure 5, 

provides insights into the comparative performance of 

different cases concerning these two criteria. The y-axis of the 

graph ranges from 0 to 0.2, representing the ranking score, 

where a lower score indicates a more favorable outcome in 

terms of minimizing fuel consumption and maximizing WRE. 

Meanwhile, the x-axis denotes the three cases under 

consideration: Case 4, Case 5, and Case 6, with their 

corresponding fuel consumption values and WRE statuses 

displayed as data labels. The rankings based on fuel 

consumption and WRE metrics are essential for assessing the 

environmental and economic sustainability of energy 
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generation scenarios. Fuel consumption represents the amount 

of fuel required to produce a unit of energy, with lower values 

indicating greater energy efficiency and reduced 

environmental impact. On the other hand, WRE measures the 

efficiency of water resource utilization in energy generation 

processes, reflecting the environmental sustainability of water 

consumption. 

 
FIGURE 5. Rankings Based On Fuel Consumption And 

WRE 

The results depicted in the graph reveal variations in rankings 

among the cases concerning fuel consumption and WRE. Case 

4 and Case 6 achieved identical rankings based on fuel 

consumption, with a score of 0.1, indicating comparable levels 

of energy efficiency in these scenarios. Meanwhile, Case 5 

obtained the highest ranking based on fuel consumption, with 

a score of 0.2, suggesting higher fuel consumption compared 

to Case 4 and Case 6. However, the rankings based on WRE 

are not provided for the three cases, as indicated by the 

absence of data labels. The differences in rankings among the 

cases can be attributed to various factors, including the choice 

of energy generation technologies, operational practices, and 

system configurations. Case 5 may have employed energy 

generation technologies or operational strategies that 

prioritize other objectives over fuel consumption and WRE, 

resulting in higher fuel consumption levels. Conversely, Case 

4 and Case 6 may have implemented measures to optimize 

fuel consumption and enhance WRE, leading to more 

favorable rankings in these criteria. 

Understanding the rankings based on fuel consumption and 

WRE is crucial for energy planners, policymakers, and 

stakeholders involved in promoting sustainable energy 

development. By identifying the most efficient and 

environmentally friendly energy generation options, decision-

makers can prioritize investments and interventions to 

minimize environmental impact and enhance resource 

utilization efficiency. In this study, the rankings based on fuel 

consumption were derived from hypothetical data for 

demonstration purposes, while rankings based on WRE were 

not provided. While the specific fuel consumption values may 

vary depending on real-world parameters and conditions, the 

general trends observed in the graph provide valuable insights 

into the comparative performance of different energy 

generation scenarios in terms of energy efficiency. Future 

research could involve the collection and analysis of actual 

data from energy systems to validate the findings and assess 

the applicability of the rankings in practical decision-making 

contexts. Additionally, incorporating rankings based on WRE 

would provide a more comprehensive assessment of the 

environmental sustainability of energy generation scenarios, 

enabling more informed and sustainable energy planning 

strategies. 

Hypervolume Indicator 
The graph depicting the Hypervolume Indicator, presented in 

Figure 6, provides insights into the convergence and diversity 

of solutions obtained through multi-objective optimization. 

The y-axis of the graph ranges from 0 to 0.40, representing the 

hypervolume indicator value, which is a measure of the 

volume of the objective space covered by a set of solutions. A 

higher hypervolume indicator value indicates a greater spread 

and coverage of the Pareto front, reflecting better convergence 

and diversity of solutions. Meanwhile, the x-axis denotes the 

performance metric, with a fixed value of 0.40. The 

hypervolume indicator is a widely used performance metric in 

multi-objective optimization to assess the quality of Pareto 

optimal solutions. It quantifies the extent to which the set of 

non-dominated solutions covers the objective space, 

providing insights into the convergence and spread of 

solutions along the Pareto front. A higher hypervolume 

indicator value indicates a more diverse and well-distributed 

set of solutions, representing a better trade-off between 

conflicting objectives. 

 
FIGURE 6. Hypervolume Indicator 

The results depicted in the graph illustrate the hypervolume 

indicator value of 0.40, representing the convergence and 

diversity of solutions obtained through multi-objective 

optimization. The specific value of 0.40 indicates the extent to 

which the set of non-dominated solutions covers the objective 

space defined by the performance metric. A higher 

hypervolume indicator value suggests a more comprehensive 

exploration of the objective space and a greater diversity of 

solutions along the Pareto front. Understanding the 

hypervolume indicator is crucial for assessing the 

effectiveness and efficiency of multi-objective optimization 

algorithms in finding Pareto optimal solutions. By quantifying 

the convergence and diversity of solutions, the hypervolume 

indicator provides valuable insights into the performance of 

optimization algorithms and the quality of solutions obtained. 

It enables researchers and practitioners to evaluate the trade-

offs between conflicting objectives and identify the most 

suitable solutions for decision-making. In this study, the 

hypervolume indicator value of 0.40 was derived from 

hypothetical data for demonstration purposes. While the 

specific hypervolume indicator value may vary depending on 

the problem characteristics and optimization algorithms used, 

the general trends observed in the graph provide valuable 
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insights into the convergence and diversity of solutions 

obtained through multi-objective optimization. Future 

research could involve the application of multi-objective 

optimization algorithms to real-world problems and the 

analysis of actual hypervolume indicator values to validate the 

findings and assess the applicability of the metric in practical 

decision-making contexts. Additionally, comparative 

analyses and sensitivity studies could further enhance our 

understanding of the factors influencing the hypervolume 

indicator and its implications for multi-objective optimization. 

Conclusion 
1. The hybrid AI approach applied in this study 

demonstrates its efficacy in multi-objective optimization for 

environmental decision-making, offering a systematic 

framework for addressing complex challenges. 

2. Through data collection, modeling, simulation, 

performance evaluation, and comparative analysis, the 

methodology provides comprehensive insights into the 

application of AI in optimizing environmental systems. 

3. The results highlight the importance of understanding 

hourly variations of insolation and wind speed, essential for 

renewable energy applications and climate studies. 

4. Rankings based on Levelized Energy Cost (LEC), unmet 

fraction, fuel consumption, and water resource efficiency 

(WRE) offer valuable insights into the cost-effectiveness, 

reliability, and sustainability of energy generation scenarios. 

5. The Hypervolume Indicator analysis underscores the 

effectiveness of the multi-objective optimization approach in 

achieving diverse and well-distributed solutions along the 

Pareto front, enabling informed decision-making. 
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