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1. Introduction  

 The field of modeling human-ecological systems has seen 

significant advancements in recent years, driven by the 

growing recognition of the complex and intertwined nature of 

human societies and natural environments. Traditional 

modeling approaches often struggle to capture the dynamic 

interactions and heterogeneous characteristics inherent in 

these systems, leading to limited predictive capabilities and 

oversimplified representations. As such, there has been a 

growing interest in exploring novel methodologies that can 

better account for the complexities of human-ecological 

systems. In this context, the integration of simulation 

techniques with agent-based modeling (ABM) has emerged as 

a promising approach to address these challenges. Simulation 

techniques have long been employed in various fields, 

including ecology, economics, and social sciences, to model 

and analyze complex systems. Simulation-based approaches 

enable researchers to simulate the behavior of systems over 

time, allowing for the exploration of different scenarios and 

the examination of system dynamics under varying 

conditions. Notably, dynamic simulation models have been 

widely used to study ecological systems, such as ecosystem 

dynamics, population dynamics, and land-use change 

dynamics (Clarke et al., 2019; Parker et al., 2003). These 

models have provided valuable insights into the complex 

interactions between biotic and abiotic components of 

ecosystems, helping researchers understand the underlying 

mechanisms driving ecosystem dynamics. 

Agent-based modeling (ABM) represents another powerful 

modeling approach that has gained popularity in recent 

decades for studying complex systems characterized by 

heterogeneous agents with adaptive behavior (Railsback and 

Grimm, 2019; Bonabeau, 2002). In ABM, individual agents 

Article history Abstract 

Accepted: 03-12-2024 

Keywords: 

Agent-based modeling 

(ABM), Dynamic 

simulation, Data 

visualization, Human-

ecological systems, 

Population dynamics, 

Performance metrics 

This study presents an integrative approach to simulate human-ecological systems 

by employing computational modeling techniques such as agent-based modeling 

(ABM), dynamic simulation, and data visualization. The research methodology 

integrates these techniques to capture the dynamic behavior and heterogeneous 

characteristics inherent in human-ecological systems. Agent-based modeling is 

utilized to simulate the behavior of agents representing different entities within the 

system, including households, firms, patches, and banks. Dynamic simulation 

techniques are employed to model system-level dynamics and interactions over 

time, enabling the simulation of key variables such as population dynamics, 

pollution levels, and activity levels of agents. Data visualization techniques are 

then used to analyze and visualize simulation outputs, facilitating the interpretation 

and communication of findings effectively. The results demonstrate the 

effectiveness of this integrative approach in capturing the complex interactions and 

dynamics within human-ecological systems. The visualizations produced provide 

valuable insights into spatial distribution, temporal dynamics, and performance 

metrics, contributing to a deeper understanding of these systems. Overall, this 

study highlights the importance of computational modeling and visualization 

techniques in studying and analyzing complex human-ecological systems, offering 

valuable implications for decision-making and management within these systems. 
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are represented as autonomous entities with specific 

characteristics and behaviors, allowing for the modeling of 

emergent phenomena resulting from interactions between 

agents and their environment. ABM has been successfully 

applied in various domains, including social sciences, 

ecology, and economics, to simulate complex systems such as 

urban systems (Batty et al., 2012), social networks (Macy and 

Willer, 2002), and ecological systems (Grimm et al., 2005). 

While both simulation techniques and ABM offer valuable 

tools for modeling complex systems, each approach has its 

own strengths and limitations. Dynamic simulation models 

excel at capturing system-level dynamics and feedback 

mechanisms but often rely on simplifying assumptions that 

may overlook individual-level heterogeneity and adaptive 

behavior. On the other hand, ABM allows for the 

representation of heterogeneous agents and adaptive behavior 

but may struggle to capture system-level dynamics and 

emergent phenomena accurately. Recognizing these 

complementary strengths, researchers have increasingly 

explored the integration of simulation techniques with ABM 

to develop more comprehensive and realistic models of 

complex systems (Parker et al., 2003). 

The integration of simulation with ABM holds significant 

promise for modeling human-ecological systems, which are 

characterized by intricate interactions between human 

societies and natural environments (Filatova et al., 2013). By 

combining the strengths of both approaches, integrated 

models can capture the dynamic and multi-level nature of 

human-ecological systems, allowing for the representation of 

heterogeneous agents with adaptive behavior interacting 

within complex environmental contexts. This integration 

enables researchers to explore how individual-level decisions 

and behaviors shape system-level dynamics and vice versa, 

facilitating a more holistic understanding of human-ecological 

interactions (Matthews et al., 2007). Furthermore, integrated 

models can provide valuable insights for policy-making and 

management by simulating the impacts of different 

interventions and management strategies on human-

ecological systems (Voinov et al., 2008). In the integration of 

simulation techniques with agent-based modeling represents a 

promising approach for modeling human-ecological systems. 

By combining the strengths of both approaches, integrated 

models can capture the dynamic and heterogeneous nature of 

these systems, enabling researchers to explore complex 

interactions between human societies and natural 

environments. This paper aims to explore the theoretical 

foundations of simulation and ABM, discuss the synergistic 

benefits of integrating these techniques, and present case 

studies demonstrating the application of integrated models to 

simulate human-ecological systems. Despite advancements in 

modeling human-ecological systems, a research gap exists in 

effectively integrating simulation techniques with agent-based 

modeling (ABM) to capture dynamic behavior and 

heterogeneous characteristics. While studies have explored 

individual components (Clarke et al., 2019) and the 

application of ABM in ecological contexts (Railsback and 

Grimm, 2019), few have thoroughly examined the integration 

of these methods to address the complexities of human-

ecological interactions. This paper aims to bridge this gap by 

proposing an integrated approach and demonstrating its 

application in simulating human-ecological systems. 

2. Research Methodology 

 The research methodology employed in this study 

integrates various computational modeling techniques to 

simulate different aspects of human-ecological systems. The 

methodology encompasses agent-based modeling (ABM), 

dynamic simulation, and data visualization to capture complex 

dynamics and heterogeneity within human-ecological 

systems. The first component of the methodology involves the 

use of agent-based modeling (ABM) to simulate the behavior 

of agents within the system. In the provided Python program, 

ABM is used to model the behavior of agents representing 

different entities such as households, firms, patches, and 

banks. Each agent type is characterized by specific attributes 

and behaviors, allowing for the representation of 

heterogeneous agents within the system. For example, in the 

simulation of urban systems, agents may represent individual 

households or firms with varying levels of activity and 

behavior (Wilensky, 1999). 

The second component of the methodology utilizes dynamic 

simulation techniques to model system-level dynamics and 

interactions over time. Dynamic simulation models are 

employed to simulate the evolution of key variables such as 

population dynamics, pollution levels, and activity levels of 

agents over multiple iterations. These dynamic models capture 

the feedback loops and interactions between different 

components of the human-ecological system, providing 

insights into the emergent behavior of the system (Railsback 

and Grimm, 2019). The third component of the methodology 

focuses on data visualization techniques to analyze and 

visualize simulation outputs. Data visualization plays a crucial 

role in interpreting simulation results and communicating 

findings effectively. In the provided Python programs, various 

data visualization techniques such as scatter plots, line plots, 

and bar plots are used to visualize the spatial distribution of 

agents, temporal trends in pollution levels and population 

dynamics, and performance metrics of different models 

(Tufte, 2001). Overall, the research methodology employed in 

this study integrates agent-based modeling, dynamic 

simulation, and data visualization techniques to simulate and 

analyze different aspects of human-ecological systems. By 

combining these computational modeling approaches, this 

methodology enables researchers to capture the dynamic 

behavior and heterogeneous characteristics inherent in 

human-ecological systems, facilitating a better understanding 

of their complex interactions and dynamics. 

3. Results and Discussion  

Agent Positions 
The graph in figure 1 depicting agent positions illustrates the 

spatial distribution of agents within the simulated human-

ecological system. In this visualization, each point represents 

the position of an individual agent in the system, with the X 

and Y axes representing the spatial coordinates. The range of 

values for both axes spans from -0.2 to 1.2, providing a 

comprehensive view of the spatial extent of the system. The 

Y-axis ranges from -0.2 to 1.2, allowing for a vertical 

representation of agent positions within the system. This range 
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encompasses the entire vertical extent of the system, enabling 

researchers to observe the distribution of agents across 

different elevations or levels within the system. The X-axis, 

similarly ranging from -0.2 to 1.2, provides a horizontal 

representation of agent positions, capturing the spatial 

distribution of agents along the horizontal plane. 

 
FIGURE 1. Agent Positions 

The choice of axis ranges, spanning from 0.8 to 0, is deliberate 

and aimed at focusing the visualization on a specific region of 

interest within the system. By narrowing the axis ranges, the 

graph zooms in on a particular area of the spatial domain, 

allowing researchers to examine the distribution of agents 

within this targeted region with greater detail and precision. 

This focused visualization approach facilitates the 

identification of spatial patterns, clusters, or concentrations of 

agents within the system, providing valuable insights into the 

spatial organization of the simulated human-ecological 

system. Overall, the graph depicting agent positions serves as 

a valuable visualization tool for analyzing the spatial 

distribution of agents within the simulated human-ecological 

system. By narrowing the axis ranges and focusing on a 

specific region of interest, this visualization enables 

researchers to gain a deeper understanding of the spatial 

patterns and organization of agents within the system, 

contributing to the broader objective of modeling and 

analyzing complex human-ecological systems. In the graph 

depicting agent positions provides a visual representation of 

the spatial distribution of agents within the simulated human-

ecological system. The deliberate choice of axis ranges 

facilitates a focused visualization approach, allowing 

researchers to examine spatial patterns and organization with 

greater detail and precision. This visualization serves as a 

valuable tool for analyzing the spatial dynamics of human-

ecological systems and contributes to a deeper understanding 

of their complex interactions and dynamics. 

Pollution Levels Over Time 
The graph in figure 2 illustrating pollution levels over time 

provides a visual representation of the temporal dynamics of 

pollution within the simulated human-ecological system. In 

this visualization, the Y-axis represents the pollution level, 

while the X-axis represents time in terms of iterations. The 

range of values for both axes is carefully selected to focus on 

the specific range of interest within the simulated system, 

enhancing the interpretability of the graph. The Y-axis ranges 

from 0 to 0.05, with incremental ticks at intervals of 0.01. This 

range allows for the depiction of pollution levels ranging from 

0% to 5%, providing a comprehensive view of the pollution 

dynamics within the system. By utilizing incremental ticks, 

the Y-axis enables researchers to observe subtle changes in 

pollution levels over time with precision, facilitating the 

identification of trends and patterns in pollution dynamics. On 

the X-axis, time is represented in terms of iterations, with ticks 

at intervals of 20 iterations. This range spans from 0 to 100 

iterations, capturing the temporal evolution of pollution levels 

throughout the simulation. By dividing time into discrete 

iterations, the X-axis facilitates the visualization of pollution 

dynamics at different stages of the simulation, enabling 

researchers to analyze how pollution levels evolve over time 

and identify temporal trends or fluctuations in pollution 

dynamics. 

 
FIGURE 2. Pollution Levels Over Time 

The choice of axis ranges, ranging from 0.04 to 0.01, is 

deliberate and aimed at focusing the visualization on a specific 

range of pollution levels within the system. By narrowing the 

axis ranges, the graph zooms in on a particular segment of the 

pollution level spectrum, allowing researchers to examine 

changes in pollution levels within this targeted range with 

greater detail and precision. This focused visualization 

approach facilitates the identification of temporal patterns, 

trends, or fluctuations in pollution dynamics, providing 

valuable insights into the temporal dynamics of pollution 

within the simulated human-ecological system. Overall, the 

graph illustrating pollution levels over time serves as a 

valuable visualization tool for analyzing the temporal 

dynamics of pollution within the simulated human-ecological 

system. By carefully selecting axis ranges and utilizing 

incremental ticks, this visualization enables researchers to 

gain a deeper understanding of how pollution levels evolve 

over time and identify temporal patterns or trends in pollution 

dynamics. This visualization contributes to the broader 

objective of modeling and analyzing complex human-

ecological systems by providing insights into the temporal 

dynamics of pollution and its implications for ecosystem 

health and human well-being. 

Population Dynamics Of Species Over Time 
The graph in figure 3 depicting the population dynamics of 

species over time offers a visual representation of how the 

populations of two species evolve throughout the simulation 
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iterations within the human-ecological system. The Y-axis 

represents the population size, while the X-axis represents 

time in terms of iterations. The selected axis ranges and values 

are carefully chosen to focus on specific population sizes and 

time intervals relevant to the simulated system, enhancing the 

clarity and interpretability of the graph. On the Y-axis, the 

population sizes are represented at intervals of 100, ranging 

from 600 to 900. This range enables the visualization of 

population sizes within a specific range, allowing researchers 

to focus on the population dynamics of interest within the 

simulated system. By utilizing incremental ticks, the Y-axis 

facilitates the observation of changes in population sizes with 

precision, aiding in the identification of trends and patterns in 

population dynamics. The X-axis represents time in terms of 

iterations, with ticks at intervals of 20 iterations ranging from 

0 to 100 iterations. This time range captures the temporal 

evolution of population dynamics throughout the simulation, 

enabling researchers to analyze how population sizes change 

over time and identify temporal trends or fluctuations in 

population dynamics. 

 
FIGURE 3. Population Dynamics Of Species Over Time 

The population dynamics of two species, represented by 

species 1 and species 2, are visualized as line plots on the 

graph. For species 1, the population sizes at each iteration are 

depicted as a line plot with values ranging from 500 to 960. 

Similarly, for species 2, the population sizes are represented 

as a line plot with values ranging from 700 to 720. The line 

plots illustrate how the populations of both species change 

over time, providing insights into the dynamics of species 

interactions within the simulated human-ecological system. 

Overall, the graph illustrating the population dynamics of 

species over time serves as a valuable visualization tool for 

analyzing how the populations of two species evolve 

throughout the simulation iterations within the human-

ecological system. By carefully selecting axis ranges and 

values and utilizing line plots, this visualization enables 

researchers to gain a deeper understanding of how population 

sizes change over time and identify temporal patterns or trends 

in population dynamics. This visualization contributes to the 

broader objective of modeling and analyzing complex human-

ecological systems by providing insights into the population 

dynamics of species and their interactions within the 

simulated ecosystem. 

Population Scatter Plot 
The population scatter plot in figure 4 provides a visual 

representation of the relationship between the populations of 

species 1 and species 2 within the simulated human-ecological 

system. Each point on the scatter plot corresponds to a specific 

combination of species 1 and species 2 populations, with the 

X-axis representing the population size of species 1 and the 

Y-axis representing the population size of species 2. The 

selected axis ranges and values are carefully chosen to focus 

on specific population sizes relevant to the simulated system, 

enhancing the clarity and interpretability of the scatter plot. 

On the X-axis, the population sizes of species 1 are 

represented at intervals of 100, ranging from 600 to 900. This 

range enables the visualization of population sizes of species 

1 within a specific range, allowing researchers to focus on the 

population dynamics of interest within the simulated system. 

Similarly, on the Y-axis, the population sizes of species 2 are 

represented at intervals of 5, ranging from 705 to 725, 

providing a comprehensive view of the population sizes of 

species 2 within the specified range. 

 
FIGURE 4. Population Scatter Plot 

The scatter plot illustrates the relationship between the 

populations of species 1 and species 2 by plotting individual 

data points corresponding to different combinations of 

population sizes. Each data point represents a specific scenario 

or state within the simulated human-ecological system, 

capturing the joint distribution of population sizes of both 

species. The position of each data point on the scatter plot 

indicates the simultaneous occurrence of specific population 

sizes of species 1 and species 2, providing insights into the 

relationship between the populations of the two species within 

the simulated ecosystem. Overall, the population scatter plot 

serves as a valuable visualization tool for analyzing the 

relationship between the populations of species 1 and species 

2 within the simulated human-ecological system. By carefully 

selecting axis ranges and values and utilizing individual data 

points, this visualization enables researchers to gain a deeper 

understanding of the joint distribution of population sizes of 

both species and identify patterns or trends in their population 

dynamics. This visualization contributes to the broader 

objective of modeling and analyzing complex human-

ecological systems by providing insights into the relationship 

between different species populations within the simulated 

ecosystem. 

Activity Levels Of Different Agent Types And 

Patches 
The graph in figure 5 illustrating the activity levels of different 

agent types and patches offers a visual representation of the 
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activity levels across various entities within the simulated 

human-ecological system. The Y-axis represents the activity 

level, while the X-axis represents the index of agents or 

patches within the system. The chosen axis ranges and values 

are carefully selected to focus on specific activity levels and 

index ranges relevant to the simulated system, enhancing the 

interpretability of the graph. On the Y-axis, activity levels are 

represented at intervals of 20, ranging from 0 to 80. This range 

allows for the visualization of activity levels within a specific 

range, enabling researchers to focus on the activity dynamics 

of interest within the simulated system. By utilizing 

incremental ticks, the Y-axis facilitates the observation of 

changes in activity levels with precision, aiding in the 

identification of trends and patterns in activity dynamics. 

 
FIGURE 5. Activity Levels Of Different Agent Types 

And Patches 

On the X-axis, the index of agents or patches within the 

system is represented. The index ranges are determined based 

on the number of households (50), firms (30), patches (100), 

and banks (3) within the simulated system. Each entity within 

the system is assigned a unique index, allowing for the 

visualization of activity levels across different types of agents 

and patches. The graph illustrates the activity levels of 

different agent types, including households, firms, and banks, 

as well as patches within the simulated ecosystem. Each entity 

is represented by a data point on the graph, with the position 

of the data point indicating its index and corresponding 

activity level. By plotting the activity levels of different agent 

types and patches on the same graph, researchers can compare 

and analyze the activity dynamics across various entities 

within the simulated human-ecological system. Overall, the 

graph depicting the activity levels of different agent types and 

patches serves as a valuable visualization tool for analyzing 

the activity dynamics within the simulated human-ecological 

system. By carefully selecting axis ranges and values and 

utilizing individual data points, this visualization enables 

researchers to gain insights into the activity levels across 

different entities within the system and identify patterns or 

trends in activity dynamics. This visualization contributes to 

the broader objective of modeling and analyzing complex 

human-ecological systems by providing insights into the 

activity dynamics of various entities within the simulated 

ecosystem. 

Performance Metrics 
The graph in figure 6 representing performance metrics offers 

a visual comparison of the performance scores across different 

models within the simulated human-ecological system. Each 

model is evaluated based on various performance metrics, 

including accuracy, precision, recall, and F1 score, which are 

represented on the Y-axis. The X-axis depicts the different 

models being evaluated, namely Model A, Model B, Model C, 

and Model D. The chosen axis ranges and values are selected 

to focus on specific performance score ranges relevant to the 

simulated system, enhancing the interpretability of the graph. 

On the Y-axis, the performance scores are represented at 

intervals of 0.2, ranging from 0 to 1. This range allows for the 

visualization of performance scores within a specific range, 

enabling researchers to focus on the performance dynamics of 

interest within the simulated system. By utilizing incremental 

ticks, the Y-axis facilitates the observation of changes in 

performance scores with precision, aiding in the identification 

of trends and patterns in performance dynamics. 

 
FIGURE 6. Performance Metrics 

On the X-axis, the different models being evaluated are 

represented. Each model is assigned a unique position on the 

X-axis, allowing for the comparison of performance scores 

across different models. The graph illustrates the performance 

scores of each model for various metrics, including accuracy, 

precision, recall, and F1 score. The graph enables researchers 

to compare the performance of different models across 

multiple metrics simultaneously. By plotting the performance 

scores of each model on the same graph, researchers can 

analyze the relative strengths and weaknesses of each model 

across different evaluation criteria. This visualization 

approach facilitates the identification of the most effective 

model based on specific performance metrics or a 

combination of metrics, providing valuable insights into the 

performance dynamics within the simulated human-

ecological system. Overall, the graph depicting performance 

metrics serves as a valuable visualization tool for evaluating 

and comparing the performance of different models within the 

simulated human-ecological system. By carefully selecting 

axis ranges and values and utilizing individual data points for 

each model and performance metric, this visualization enables 

researchers to gain insights into the relative effectiveness of 

different models and identify patterns or trends in 

performance dynamics. This visualization contributes to the 

broader objective of modeling and analyzing complex human-

ecological systems by providing insights into the performance 

of different models and their implications for decision-making 

and management within the simulated ecosystem. 
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Conclusion 
1. The integration of agent-based modeling, dynamic 

simulation, and data visualization techniques provides a 

comprehensive framework for studying complex human-

ecological systems.   

2. The visualization tools presented in this study offer 

valuable insights into the spatial distribution, temporal 

dynamics, and performance metrics of simulated systems. 

3. The spatial distribution of agents within the system 

reveals patterns, clusters, and concentrations that contribute to 

a deeper understanding of the spatial organization of human-

ecological systems. 

4. Analysis of pollution levels over time highlights temporal 

trends, fluctuations, and patterns, providing insights into the 

dynamics of pollution within simulated ecosystems. 

5. The visualization of population dynamics and species 

interactions offers valuable insights into how populations 

evolve over time and how different species interact within the 

simulated ecosystem. 

6. Evaluation of performance metrics across different 

models enables researchers to identify the most effective 

models based on specific evaluation criteria, contributing to 

informed decision-making and management within human-

ecological systems. 
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